
Deep Learning 
pour le traitement du langage naturel

Emanuela Boros
boros@teklia.com

Christopher Kermorvant
kermorvant@teklia.com



Représentation vectorielle de documents



Représentation vectorielle de documents

Je vous envoie ma nouvelle adresse. Je vous remercie.
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Représentation vectorielle de documents

• Problème du comptage brut : les mots « vides » 
sont les plus fréquents



Représentation vectorielle de documents

• Solution 1 : supprimer les mots vides (black list)
• Solution 2 : pénaliser les mots qui apparaissent 

dans beaucoup de documents

Représentation très utilisée : tfi*idfi

: nombre de document où le mot ti apparait.
|D| : nombre total de documents dans le corpus.

idfi = inverse document frequency



Représentation vectorielle de documents

Comment représenter les similarités de termes ? 

L’altitude du Mont Blanc est 4810 mètres
La hauteur du Mont Blanc est de 4810 mètres

Dans une représentation vectorielle classique : 

Distance (altitude, hauteur) = Distance (altitude, lavabo)

Aucune prise en compte de la proximité sémantique



Représentation vectorielle des mots

Comment apprendre le sens des mots ? 
• Approches par dictionnaires, ontologies
• Approches par corpus

Firth (1957): ”You shall know a 
word by the company it keeps!”

Apprentissage du sens d’un mot par 
ses contextes d’usage



Représentation vectorielle des mots

“Tesgüino” ?

1. lac finlandais         2. boisson mexicaine 3. manga japonais

Nida, E. A. 1975. Componential analysis of meaning: An introduction to semantic structures.



Représentation vectorielle des mots

Tesgüino ?

Une bouteille de tesgüno est sur 
la table.

Le tesgüino est produit en 
Sierra Madre occidentale au 
Mexique.

Boire du tesgüino rend ivre.

On fabrique le tesgüono à partir 
de maïs.

Représentation du sens d’un mot par ses contextes d’usage



Représentation vectorielle des mots

Matrice terme-document : représenter les mots par les 
documents dans lesquels ils apparaissent



Représentation vectorielle des mots

• human et user ne partagent aucun contexte 
(document)

• human et minors non plus

• distance (human,user) > distance(human,minors)

Limite : il faudrait beaucoup de documents pour bien 
représenter les mots



• Dans un espace en haute dimension, tous les points 
sont loins les uns des autres. 

• Le nombre de données nécessaires pour couvrir 
l’espace augmente de manière exponentielle.

Malédiction de la dimensionalité



dimension 2 : 

Vcube = 1 Vsphère= π/4

dimension 3 :

Vcube = 1 Vsphère= π /6

dimension d :

Vcube = 1 Vsphère= 

Exemple : volume d’une sphère de rayon 0.5
inscrite dans un cube de coté 1

Malédiction de la dimensionalité



• Lorsque la dimension augmente, le volume de la 
sphère devient négligeable par rapport au volume du 
cube : tous les points de l’espace sont dans les coins, 
éloignés les uns des autres.

• Plus la dimension augmente, plus il faut de points 
pour couvrir l’espace et estimer les modèles

Malédiction de la dimensionalité



Réduction de dimension

Intuition : en réalité, les points n’occupent pas 
uniformément tout l’espace 

• les points sont représentés en 3 dimensions (figures 
a. et b.)

• mais en réalité, ils sont disposés sur un sous-espace 
de dimension 2 ( figure c.)



On peut donc conserver les relations entre les points 
tout en réduisant  la dimension de l’espace de 
représentation

Réduction de dimension



Analyse en composantes principales (PCA)

• Recherche des axes des 
composantes principales

• Sélection des composantes

• Projection des données sur les 
axes des composantes

Réduction de dimension



• Singular Value Decomposition : extension de 
l’ACP aux matrices non carrés

• Latent Semantic Indexing : SVD appliqué à la 
matrice termes-documents

Latent semantic indexing/analysis

Deerwester et al.,  Indexing by latent semantic analysis, 1990



Latent semantic indexing/analysis

• Approximation de rang inférieur : k < m (rang de X, k ≈ 300

• LSA/LSI représente le sens d’un mot comme une moyenne
pondérée du sens des documents dans lesquel il apparait et en
même temps le sens d’un document comme une moyenne
pondérée des sens mots qu’il contient.



Solutions proposées : 
• Normalisation de la matrice basée sur

• l’entropie ou la corrélation  (COALS, Rohde et al., 2006)
• Pointwise mutual information (PPMI, Bullinaria and Levy, 

2007)
• …

• Les mots les plus fréquents ont un poids très important 
dans la matrice de co-occurrence

• LSI modélise la relation statistiques des mots et des 
documents : difficulté de passage à l’échelle si le nombre
de mots ou documents augmente

• LSI ne prend en compte ni l’ordre des mots, ni leur
relations syntaxiques ou logiques, ni la morphologie

Latent semantic indexing/analysis

Limites de LSI : 



Glove

• Prise en compte des co-occurrences des mots pour la 
création de représentations vectorielles

• Objectif : trouver une représentation vectorielle qui 
conserve les ratios de fréquence de co-occurrence

Pennington et al., Glove: Global vectors for 
word representation. 2014

Pij = P (j|i) = Xij

Xi



V : taille du vocabulaire
f :  fonction de pondération
bi :  permet de prendre en compte les différences de fréquence Xi

Wi : représentation vectorielle

Recherche des représentation vectorielles des mots qui approchent
le mieux log(Xij)

Optimisation par descente de gradient

Glove

Apprentissage : minimisation de J 



A Neural Probabilistic Language Model 
Bengio et al., 2003
BENGIO, DUCHARME, VINCENT AND JAUVIN

(running,walking), we could naturally generalize (i.e. transfer probability mass) from
The cat is walking in the bedroom

to A dog was running in a room
and likewise to The cat is running in a room

A dog is walking in a bedroom
The dog was walking in the room

...
and many other combinations. In the proposed model, it will so generalize because “similar” words
are expected to have a similar feature vector, and because the probability function is a smooth
function of these feature values, a small change in the features will induce a small change in the
probability. Therefore, the presence of only one of the above sentences in the training data will in-
crease the probability, not only of that sentence, but also of its combinatorial number of “neighbors”
in sentence space (as represented by sequences of feature vectors).

1.2 Relation to Previous Work

The idea of using neural networks to model high-dimensional discrete distributions has already
been found useful to learn the joint probability of Z1 · · ·Zn, a set of random variables where each is
possibly of a different nature (Bengio and Bengio, 2000a,b). In that model, the joint probability is
decomposed as a product of conditional probabilities

P̂(Z1 = z1, · · · ,Zn = zn) =∏
i
P̂(Zi = zi|gi(Zi�1 = zi�1,Zi�2 = zi�2, · · · ,Z1 = z1)),

where g(.) is a function represented by a neural network with a special left-to-right architecture,
with the i-th output block gi() computing parameters for expressing the conditional distribution of
Zi given the value of the previous Z’s, in some arbitrary order. Experiments on four UCI data sets
show this approach to work comparatively very well (Bengio and Bengio, 2000a,b). Here we must
deal with data of variable length, like sentences, so the above approach must be adapted. Another
important difference is that here, all the Zi (word at i-th position), refer to the same type of object (a
word). The model proposed here therefore introduces a sharing of parameters across time – the same
gi is used across time – that is, and across input words at different positions. It is a successful large-
scale application of the same idea, along with the (old) idea of learning a distributed representation
for symbolic data, that was advocated in the early days of connectionism (Hinton, 1986, Elman,
1990). More recently, Hinton’s approach was improved and successfully demonstrated on learning
several symbolic relations (Paccanaro and Hinton, 2000). The idea of using neural networks for
language modeling is not new either (e.g. Miikkulainen and Dyer, 1991). In contrast, here we push
this idea to a large scale, and concentrate on learning a statistical model of the distribution of word
sequences, rather than learning the role of words in a sentence. The approach proposed here is also
related to previous proposals of character-based text compression using neural networks to predict
the probability of the next character (Schmidhuber, 1996). The idea of using a neural network for
language modeling has also been independently proposed by Xu and Rudnicky (2000), although
experiments are with networks without hidden units and a single input word, which limit the model
to essentially capturing unigram and bigram statistics.

The idea of discovering some similarities between words to obtain generalization from training
sequences to new sequences is not new. For example, it is exploited in approaches that are based on
learning a clustering of the words (Brown et al., 1992, Pereira et al., 1993, Niesler et al., 1998, Baker
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Modélisation statistique de la langue



A Neural Probabilistic Language Model 
Bengio et al., 2003



A Unified Architecture for Natural Language Processing: 
Deep Neural Networks with Multitask Learning, ICML 2008 

A Unified Architecture for Natural Language Processing

ing the lookup-table to each of its words.

It is important to note that the parameters W of the
layer are automatically trained during the learning
process using backpropagation.

Variations on Word Representations In practice,
one may want to introduce some basic pre-processing,
such as word-stemming or dealing with upper and
lower case. In our experiments, we limited ourselves to
converting all words to lower case, and represent the
capitalization as a separate feature (yes or no).

When a word is decomposed into K elements (fea-
tures), it can be represented as a tuple i =
{i1, i2, . . . iK} 2 D1 ⇥ · · ·⇥DK , where Dk is the dic-
tionary for the kth-element. We associate to each ele-
ment a lookup-table LTW k(·), with parameters W k 2
Rdk⇥|Dk| where dk 2 N is a user-specified vector size.
A word i is then embedded in a d =

P
k dk dimensional

space by concatenating all lookup-table outputs:

LTW 1,...,W K (i)T = (LTW 1(i1)T, . . . , LTW K (iK)T)

Classifying with Respect to a Predicate In a
complex task like SRL, the class label of each word in a
sentence depends on a given predicate. It is thus neces-
sary to encode in the NN architecture which predicate
we are considering in the sentence.

We propose to add a feature for each word that encodes
its relative distance to the chosen predicate. For the ith

word in the sentence, if the predicate is at position posp

we use an additional lookup table LT distp(i� posp).

3.2. Variable Sentence Length

The lookup table layer maps the original sentence into
a sequence x(·) of n identically sized vectors:

(x1,x2, . . . , xn), 8t xt 2 Rd . (1)

Obviously the size n of the sequence varies depending
on the sentence. Unfortunately normal NNs are not
able to handle sequences of variable length.

The simplest solution is to use a window approach:
consider a window of fixed size ksz around each word
we want to label. While this approach works with
great success on simple tasks like POS, it fails on more
complex tasks like SRL. In the latter case it is common
for the role of a word to depend on words far away
in the sentence, and hence outside of the considered
window.

When modeling long-distance dependencies is impor-
tant, Time-Delay Neural Networks (TDNNs) (Waibel
et al., 1989) are a better choice. Here, time refers

Input Sentence
the cat sat on the matfeature 1 (text)
s1(1) s1(2) s1(3) s1(4) s1(5) s1(6)feature 2

...
feature K sK(1) sK(2) sK(3) sK(4) sK(5) sK(6)

Max Over Time ...

Optional Classical NN Layer(s)

Softmax

Lookup Tables

LTw

... ... ...... ... ... ...

1

LTwK

#hidden units * (n-2)

Convolution Layer

...

#hidden units

#classes

(d1+d2+...dK)*n

n words, K features

Figure 1. A general deep NN architecture for NLP. Given
an input sentence, the NN outputs class probabilities for
one chosen word. A classical window approach is a special
case where the input has a fixed size ksz, and the TDNN
kernel size is ksz; in that case the TDNN layer outputs
only one vector and the Max layer performs an identity.

to the idea that a sequence has a notion of order. A
TDNN “reads” the sequence in an online fashion: at
time t � 1, one sees xt, the tth word in the sentence.

A classical TDNN layer performs a convolution on a
given sequence x(·), outputting another sequence o(·)
whose value at time t is:

o(t) =
n�tX

j=1�t

Lj · xt+j , (2)

where Lj 2 Rnhu⇥d (�n  j  n) are the parameters
of the layer (with nhu hidden units) trained by back-
propagation. One usually constrains this convolution
by defining a kernel width, ksz, which enforces

8 |j| > (ksz � 1)/2, Lj = 0 . (3)

A classical window approach only considers words in
a window of size ksz around the word to be labeled.
Instead, if we use (2) and (3), a TDNN considers at the
same time all windows of ksz words in the sentence.

TDNN layers can also be stacked so that one can ex-
tract local features in lower layers, and more global
features in subsequent ones. This is an approach typ-
ically used in convolutional networks for vision tasks,
such as the LeNet architecture (LeCun et al., 1998).

We then add to our architecture a layer which captures
the most relevant features over the sentence by feeding

Ronan Colobert et Jason Weston

Apprentissage des représentations
(deep learning versus shallow

features)

Entrainement end-to-end versus 
features engineering + classifieur

Pré-entrainement non supervisé 
(modèle de langue)

Apprentissage supervisé mutli-
tâche

2018 International Conference on Machine Learning (ICML) “Test of Time Award”



NxDxH reste problématique

V = 100 000
D = 50 à 200
H = 500 à 1000

HxV est énorme mais il existe 
des techniques d’accélération

A Neural Probabilistic Language Model 
Bengio et al., 2003



Efficient Estimation of Word 
Representations in Vector 
Space

Tomas Mikolov
Kai Chen
Greg Corrado
Jeffrey Dean

Proceedings of Workshop 
at ICLR, 2013.

Word2Vec



• Objectif : étant donné un mot wt dans un corpus 
de taille T,  prédire les mots  wc qui peuvent
apparaitre dans son contexte :

Word2Vec

2 Related work

Morphological word representations. In recent
years, many methods have been proposed to incor-
porate morphological information into word repre-
sentations. To model rare words better, Alexan-
drescu and Kirchhoff (2006) introduced factored
neural language models, where words are repre-
sented as sets of features. These features might in-
clude morphological information, and this technique
was succesfully applied to morphologically rich lan-
guages, such as Turkish (Sak et al., 2010). Re-
cently, several works have proposed different com-
position functions to derive representations of words
from morphemes (Lazaridou et al., 2013; Luong
et al., 2013; Botha and Blunsom, 2014; Qiu et
al., 2014). These different approaches rely on a
morphological decomposition of words, while ours
does not. Similarly, Chen et al. (2015) introduced
a method to jointly learn embeddings for Chinese
words and characters. Cui et al. (2015) proposed
to constrain morphologically similar words to have
similar representations. Soricut and Och (2015)
described a method to learn vector representations
of morphological transformations, allowing to ob-
tain representations for unseen words by applying
these rules. Word representations trained on mor-
phologically annotated data were introduced by Cot-
terell and Schütze (2015). Closest to our approach,
Schütze (1993) learned representations of character
four-grams through singular value decomposition,
and derived representations for words by summing
the four-grams representations. Very recently, Wi-
eting et al. (2016) also proposed to represent words
using character n-gram count vectors. However, the
objective function used to learn these representa-
tions is based on paraphrase pairs, while our model
can be trained on any text corpus.

Character level features for NLP. Another area
of research closely related to our work are character-
level models for natural language processing. These
models discard the segmentation into words and aim
at learning language representations directly from
characters. A first class of such models are recur-
rent neural networks, applied to language model-
ing (Mikolov et al., 2012; Sutskever et al., 2011;
Graves, 2013; Bojanowski et al., 2015), text nor-
malization (Chrupała, 2014), part-of-speech tag-

ging (Ling et al., 2015) and parsing (Ballesteros et
al., 2015). Another family of models are convolu-
tional neural networks trained on characters, which
were applied to part-of-speech tagging (dos San-
tos and Zadrozny, 2014), sentiment analysis (dos
Santos and Gatti, 2014), text classification (Zhang
et al., 2015) and language modeling (Kim et al.,
2016). Sperr et al. (2013) introduced a language
model based on restricted Boltzmann machines, in
which words are encoded as a set of character n-
grams. Finally, recent works in machine translation
have proposed using subword units to obtain repre-
sentations of rare words (Sennrich et al., 2016; Lu-
ong and Manning, 2016).

3 Model

In this section, we propose our model to learn word
representations while taking into account morphol-
ogy. We model morphology by considering subword
units, and representing words by a sum of its charac-
ter n-grams. We will begin by presenting the general
framework that we use to train word vectors, then
present our subword model and eventually describe
how we handle the dictionary of character n-grams.

3.1 General model
We start by briefly reviewing the continuous skip-
gram model introduced by Mikolov et al. (2013b),
from which our model is derived. Given a word vo-
cabulary of size W , where a word is identified by
its index w 2 {1, ...,W}, the goal is to learn a
vectorial representation for each word w. Inspired
by the distributional hypothesis (Harris, 1954), word
representations are trained to predict well words that
appear in its context. More formally, given a large
training corpus represented as a sequence of words
w1, ..., wT , the objective of the skipgram model is to
maximize the following log-likelihood:

TX

t=1

X

c2Ct

log p(wc | wt),

where the context Ct is the set of indices of words
surrounding word wt. The probability of observing
a context word wc given wt will be parameterized
using the aforementioned word vectors. For now, let
us consider that we are given a scoring function s
which maps pairs of (word, context) to scores in R.

One possible choice to define the probability of a
context word is the softmax:

p(wc | wt) =
es(wt, wc)

PW
j=1 e

s(wt, j)
.

However, such a model is not adapted to our case as
it implies that, given a word wt, we only predict one
context word wc.

The problem of predicting context words can in-
stead be framed as a set of independent binary clas-
sification tasks. Then the goal is to independently
predict the presence (or absence) of context words.
For the word at position t we consider all context
words as positive examples and sample negatives at
random from the dictionary. For a chosen context
position c, using the binary logistic loss, we obtain
the following negative log-likelihood:

log
⇣
1 + e�s(wt, wc)

⌘
+

X

n2Nt,c

log
⇣
1 + es(wt, n)

⌘
,

where Nt,c is a set of negative examples sampled
from the vocabulary. By denoting the logistic loss
function ` : x 7! log(1 + e�x), we can re-write the
objective as:

TX

t=1

2

4
X

c2Ct

`(s(wt, wc)) +
X

n2Nt,c

`(�s(wt, n))

3

5 .

A natural parameterization for the scoring function
s between a word wt and a context word wc is to use
word vectors. Let us define for each word w in the
vocabulary two vectors uw and vw in Rd. These two
vectors are sometimes referred to as input and out-

put vectors in the literature. In particular, we have
vectors uwt and vwc , corresponding, respectively, to
words wt and wc. Then the score can be computed
as the scalar product between word and context vec-
tors as s(wt, wc) = u>

wt
vwc . The model described

in this section is the skipgram model with negative
sampling, introduced by Mikolov et al. (2013b).

3.2 Subword model
By using a distinct vector representation for each
word, the skipgram model ignores the internal struc-
ture of words. In this section, we propose a different
scoring function s, in order to take into account this
information.

Each word w is represented as a bag of character
n-gram. We add special boundary symbols < and >
at the beginning and end of words, allowing to dis-
tinguish prefixes and suffixes from other character
sequences. We also include the word w itself in the
set of its n-grams, to learn a representation for each
word (in addition to character n-grams). Taking the
word where and n = 3 as an example, it will be
represented by the character n-grams:

<wh, whe, her, ere, re>

and the special sequence
<where>.

Note that the sequence <her>, corresponding to the
word her is different from the tri-gram her from the
word where. In practice, we extract all the n-grams
for n greater or equal to 3 and smaller or equal to 6.
This is a very simple approach, and different sets of
n-grams could be considered, for example taking all
prefixes and suffixes.

Suppose that you are given a dictionary of n-
grams of size G. Given a word w, let us denote by
Gw ⇢ {1, . . . , G} the set of n-grams appearing in
w. We associate a vector representation zg to each
n-gram g. We represent a word by the sum of the
vector representations of its n-grams. We thus ob-
tain the scoring function:

s(w, c) =
X

g2Gw

z>g vc.

This simple model allows sharing the representa-
tions across words, thus allowing to learn reliable
representation for rare words.

In order to bound the memory requirements of our
model, we use a hashing function that maps n-grams
to integers in 1 to K. We hash character sequences
using the Fowler-Noll-Vo hashing function (specifi-
cally the FNV-1a variant).1 We set K = 2.106 be-
low. Ultimately, a word is represented by its index
in the word dictionary and the set of hashed n-grams
it contains.

4 Experimental setup

4.1 Baseline
In most experiments (except in Sec. 5.3), we
compare our model to the C implementation

1http://www.isthe.com/chongo/tech/comp/fnv

• Si s est une fonction de similarité entre mots, la 
probabilité d’un mot wc conditionnellement à un 
autre mot wt peut être calculée par : 



• Word2Vec remplace donc cette fonction objectif
par une tâche de classification : prédire si oui ou
non un mot apparait dans le contexte d’un mot 
donné : 

• Où est un ensemble de mots (exemples
négatifs) tirés du vocabulaire

Word2Vec
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context word is the softmax:

p(wc | wt) =
es(wt, wc)

PW
j=1 e

s(wt, j)
.

However, such a model is not adapted to our case as
it implies that, given a word wt, we only predict one
context word wc.

The problem of predicting context words can in-
stead be framed as a set of independent binary clas-
sification tasks. Then the goal is to independently
predict the presence (or absence) of context words.
For the word at position t we consider all context
words as positive examples and sample negatives at
random from the dictionary. For a chosen context
position c, using the binary logistic loss, we obtain
the following negative log-likelihood:

log
⇣
1 + e�s(wt, wc)

⌘
+

X

n2Nt,c

log
⇣
1 + es(wt, n)

⌘
,

where Nt,c is a set of negative examples sampled
from the vocabulary. By denoting the logistic loss
function ` : x 7! log(1 + e�x), we can re-write the
objective as:

TX

t=1

2

4
X

c2Ct

`(s(wt, wc)) +
X

n2Nt,c

`(�s(wt, n))

3

5 .

A natural parameterization for the scoring function
s between a word wt and a context word wc is to use
word vectors. Let us define for each word w in the
vocabulary two vectors uw and vw in Rd. These two
vectors are sometimes referred to as input and out-

put vectors in the literature. In particular, we have
vectors uwt and vwc , corresponding, respectively, to
words wt and wc. Then the score can be computed
as the scalar product between word and context vec-
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from the vocabulary. By denoting the logistic loss
function ` : x 7! log(1 + e�x), we can re-write the
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A natural parameterization for the scoring function
s between a word wt and a context word wc is to use
word vectors. Let us define for each word w in the
vocabulary two vectors uw and vw in Rd. These two
vectors are sometimes referred to as input and out-

put vectors in the literature. In particular, we have
vectors uwt and vwc , corresponding, respectively, to
words wt and wc. Then the score can be computed
as the scalar product between word and context vec-
tors as s(wt, wc) = u>

wt
vwc . The model described

in this section is the skipgram model with negative
sampling, introduced by Mikolov et al. (2013b).

3.2 Subword model
By using a distinct vector representation for each
word, the skipgram model ignores the internal struc-
ture of words. In this section, we propose a different
scoring function s, in order to take into account this
information.

Each word w is represented as a bag of character
n-gram. We add special boundary symbols < and >
at the beginning and end of words, allowing to dis-
tinguish prefixes and suffixes from other character
sequences. We also include the word w itself in the
set of its n-grams, to learn a representation for each
word (in addition to character n-grams). Taking the
word where and n = 3 as an example, it will be
represented by the character n-grams:

<wh, whe, her, ere, re>

and the special sequence
<where>.

Note that the sequence <her>, corresponding to the
word her is different from the tri-gram her from the
word where. In practice, we extract all the n-grams
for n greater or equal to 3 and smaller or equal to 6.
This is a very simple approach, and different sets of
n-grams could be considered, for example taking all
prefixes and suffixes.

Suppose that you are given a dictionary of n-
grams of size G. Given a word w, let us denote by
Gw ⇢ {1, . . . , G} the set of n-grams appearing in
w. We associate a vector representation zg to each
n-gram g. We represent a word by the sum of the
vector representations of its n-grams. We thus ob-
tain the scoring function:

s(w, c) =
X

g2Gw

z>g vc.

This simple model allows sharing the representa-
tions across words, thus allowing to learn reliable
representation for rare words.

In order to bound the memory requirements of our
model, we use a hashing function that maps n-grams
to integers in 1 to K. We hash character sequences
using the Fowler-Noll-Vo hashing function (specifi-
cally the FNV-1a variant).1 We set K = 2.106 be-
low. Ultimately, a word is represented by its index
in the word dictionary and the set of hashed n-grams
it contains.

4 Experimental setup

4.1 Baseline
In most experiments (except in Sec. 5.3), we
compare our model to the C implementation

1http://www.isthe.com/chongo/tech/comp/fnv
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to integers in 1 to K. We hash character sequences
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• Supprimer la couche cachée

• Sommer les contextes

Approche 1 : Continuous Bag of word (CBOW)
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Word2Vec
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Limites : 
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subword information»

« Learn representationsfor character n-grams, and 
to represent words as the sum of the n-gram 
vectors »
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it implies that, given a word wt, we only predict one
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The problem of predicting context words can in-
stead be framed as a set of independent binary clas-
sification tasks. Then the goal is to independently
predict the presence (or absence) of context words.
For the word at position t we consider all context
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the following negative log-likelihood:
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at the beginning and end of words, allowing to dis-
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word (in addition to character n-grams). Taking the
word where and n = 3 as an example, it will be
represented by the character n-grams:

<wh, whe, her, ere, re>

and the special sequence
<where>.

Note that the sequence <her>, corresponding to the
word her is different from the tri-gram her from the
word where. In practice, we extract all the n-grams
for n greater or equal to 3 and smaller or equal to 6.
This is a very simple approach, and different sets of
n-grams could be considered, for example taking all
prefixes and suffixes.

Suppose that you are given a dictionary of n-
grams of size G. Given a word w, let us denote by
Gw ⇢ {1, . . . , G} the set of n-grams appearing in
w. We associate a vector representation zg to each
n-gram g. We represent a word by the sum of the
vector representations of its n-grams. We thus ob-
tain the scoring function:

s(w, c) =
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z>g vc.

This simple model allows sharing the representa-
tions across words, thus allowing to learn reliable
representation for rare words.

In order to bound the memory requirements of our
model, we use a hashing function that maps n-grams
to integers in 1 to K. We hash character sequences
using the Fowler-Noll-Vo hashing function (specifi-
cally the FNV-1a variant).1 We set K = 2.106 be-
low. Ultimately, a word is represented by its index
in the word dictionary and the set of hashed n-grams
it contains.

4 Experimental setup

4.1 Baseline
In most experiments (except in Sec. 5.3), we
compare our model to the C implementation
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information.

Each word w is represented as a bag of character
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Fast Text

Décomposition en ngrams : 

Paramètres : 

• Dimension de l’embedding : 300 / Taille du contexte : entre 1 et 5 (aléatoire)

• Nombre d’exemples négatifs : 5, tirés selon la racine carré de leur fréquence



Fast Text

Les clés du succès : 

• Code open source (C++, python), documenté et rapide 

• Modèles pré-entrainés disponibles  en 157 langues

• … et un bonne communication



Word embeddings modèles plus complexes 

Avec réseaux de neurones récurrents 

• Semi-supervised sequence tagging with bidirectional language models,Peters et al., ACL 2017

• Deep Contextualized word representation, Peters et al., NAACL 2018



Word embeddings modèles plus complexes 

Avec des modèles d’attention

• Attention is all you need, Vaswani et al., NIPS 2017
Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.
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Word embeddings : problème de biais

Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings, 
Bolukbasi et al. NIPS 2016

Extreme she occupations
1. homemaker 2. nurse 3. receptionist
4. librarian 5. socialite 6. hairdresser
7. nanny 8. bookkeeper 9. stylist
10. housekeeper 11. interior designer 12. guidance counselor

Extreme he occupations
1. maestro 2. skipper 3. protege
4. philosopher 5. captain 6. architect
7. financier 8. warrior 9. broadcaster
10. magician 11. figher pilot 12. boss

Figure 1: The most extreme occupations as projected on to the she�he gender direction on g2vNEWS.
Occupations such as businesswoman, where gender is suggested by the orthography, were excluded.

Gender stereotype she-he analogies.
sewing-carpentry register-nurse-physician housewife-shopkeeper
nurse-surgeon interior designer-architect softball-baseball
blond-burly feminism-conservatism cosmetics-pharmaceuticals
giggle-chuckle vocalist-guitarist petite-lanky
sassy-snappy diva-superstar charming-affable
volleyball-football cupcakes-pizzas hairdresser-barber

Gender appropriate she-he analogies.
queen-king sister-brother mother-father
waitress-waiter ovarian cancer-prostate cancer convent-monastery

Figure 2: Analogy examples. Examples of automatically generated analogies for the pair she-he using the
procedure described in text. For example, the first analogy is interpreted as she:sewing :: he:carpentry in the
original w2vNEWS embedding. Each automatically generated analogy is evaluated by 10 crowd-workers are
to whether or not it reflects gender stereotype. Top: illustrative gender stereotypic analogies automatically
generated from w2vNEWS, as rated by at least 5 of the 10 crowd-workers. Bottom: illustrative generated
gender-appropriate analogies.

softball extreme gender portion after debiasing
1. pitcher -1% 1. pitcher
2. bookkeeper 20% 2. infielder
3. receptionist 67% 3. major leaguer
4. registered nurse 29% 4. bookkeeper
5. waitress 35% 5. investigator

football extreme gender portion after debiasing
1. footballer 2% 1. footballer
2. businessman 31% 2. cleric
3. pundit 10% 3. vice chancellor
4. maestro 42% 4. lecturer
5. cleric 2% 5. midfielder

Figure 3: Example of indirect bias. The five most extreme occupations on the softball-football axis, which
indirectly captures gender bias. For each occupation, the degree to which the association represents a gender
bias is shown, as described in Section 5.3.
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